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Abstract

A nonlinear viscoelastic constitutive model for the solid propellant is proposed. In their earlier work, the authors
have developed an isotropic constitutive model and veri®ed it for one-dimensional case. In the present work, the
validity of the model is extended to three-dimensional cases. Also, implementation of the model into a commercial
code for the use of the constitutive model in the ®nite element analysis of solid propellant is discussed. Large

deformation, dewetting and cyclic loading e�ects are treated as main sources of nonlinear behavior of the solid
propellant. The softening of the solid propellant due to dewetting is treated by the modulus decrease. The
nonlinearities during cyclic loading are accounted for by the functions of the octahedral shear strain measure. The

constitutive equation is implemented into a ®nite element code for the analysis of propellant grains. A commercial
®nite element package `ABAQUS' is used for the analysis and the model is introduced into the code through a user
subroutine. The model is evaluated with di�erent loading conditions and the predicted values are in good agreement

with the biaxial test results. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Composite solid propellants are considered as lightly cross-linked, long chain polymers ®lled with
solid particles. These materials exhibit highly nonlinear viscoelastic response due to the damage process
such as the Mullin's e�ect, dewetting, nonlinear time±temperature e�ect and large deformation (Farris
and Schapery, 1973). These microscopic changes cause the solid propellant to lose its initial sti�ness and
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change its bulk behavior from incompressible to compressible behavior. The very complicated nonlinear
behavior of solid propellants also comes from the features associated with time±temperature
e�ects(Ravichandran and Liu, 1995). Recently, Jung and Youn (1999) proposed a constitutive model,
which includes the e�ect of the large deformation, stress softening by dewetting in micro structure and
nonlinearities in the cyclic loading on the overall stress±strain behavior. This model was experimentally
veri®ed on the various uniaxial loading conditions. In the present study, the model is extended to a
general three dimensional state for the stress analysis of propellant grains. In extending the existing
model, the cyclic loading damage functions are modi®ed to improve stress prediction accuracy. A
commercial ®nite element package `ABAQUS' is adopted for analysis and the developed constitutive
equation is implemented through a user subroutine, UMAT. The validity is tested using the strip biaxial
specimens with circular holes subjected to di�erent loading conditions.

2. The constitutive model

2.1. The developed constitutive model

In the constitutive model developed by Jung and Youn (1999), it is assumed that the time
characteristics of the free energy of solid propellant do not change by damage and the propellant is
homogeneous and isotropic. In this case, the free energy function of the propellant can be regarded as
the free energy of the undamaged propellant multiplied by a damage function. Damages considered are
the dewetting phenomena and the nonlinearities inherent in the load±unload cycles. A viscoelastic
dewetting criterion is derived from the law of energy conservation. The damage due to ®ller dewetting
causes decrease in e�ective moduli of the propellant. The reduction in e�ective moduli is regarded as the
results of the decrease in the e�ective ®ller volume fraction. The function of generalized octahedral shear
stain is introduced as the medium of cyclic load e�ect. The large strain capability of solid propellant
requires that the stress±strain relation be formulated in terms of the appropriate stress and strain
tensors. For this, Simo's model (Simo, 1987) for stress±strain behavior is adopted and modi®ed. Simo's
constitutive relation is modi®ed by generalizing the elastic bulk response to viscoelastic one and
introducing the volumetric and deviatoric damage functions, Dv, Dd. The model was veri®ed in the
uniaxial stress ®eld. While some models require many phenomenological nonlinear functions (OÈ zuÈ pek
and Becker, 1996; Park and Schapery, 1997), this model has the advantages, in that, it re¯ects the
realistic viscoelastic dewetting behavior as well as the e�ects of the properties of the individual
constituent in the solid propellant. The resulting constitutive equation is of the following form.
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S(t ) is the second Piola±Kirchho� stress, J the determinant of the deformation gradient, �E the volume
preserving part of Green strain E, K�t� � K1�

Pn
i�1 Ki eÿt=ti the bulk relaxation modulus, G�t� � G1�
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Pn
i�1 Gi eÿt=ti the shear relaxation modulus, K0 � K1 �

Pn
i�1 Ki, G0 � G1 �
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i�1 Gi, DEV��� �
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3 �C : ����C ÿ1 and C the Cauchy±Green tensor. Also, U 0�J � and �C

0� �E� are the uncoupled
volumetric and deviatoric parts of the initial elastic stored energy, Dv and Dd the volumetric and
deviatoric damage functions, respectively. Also
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are the reduced times and aT the time±temperature shift factor.
In this model, the volumetric and deviatoric damages caused by dewetting are de®ned as follows:

D̂v � KD

K
�5�

D̂d � GD

G
�6�

where KD and GD are the decreased propellant moduli due to dewetting. To calculate KD and GD, we
need to know when debonding will occur and how much reduction of the moduli caused by dewetting.
Therefore dewetting criterion and the method that calculates modulus decrease due to debonding is
essential. From the energy balence consideration for dewetting following viscoelastic dewetting criterion
has been derived (Jung and Youn, 1999).
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where c is the current ®ller volume fraction, S 0ij and sii the deviatoric and volumetric stresses, R the ®ller
radius, Gc the adhesion energy between the ®ller and binder of solid propellant. From Eq. (7) we could
say that large ®ller particles debond ®rst under the same stress level and to be able to determine the
reduction in particle volume fraction due to dewetting under the current stress level, we need ®ller size
distribution like Fig. 7. The statistical distribution of ®ller particle size has been obtained by using
particle sizer. In the implementation, the ®ller particles are divided into large number of groups with
di�erent radii. The debonded particles are eliminated from the propellants and replaced with voids of
equal sizes. The dewetting causes loss of reinforcement in the propellant. Modulus changes based on
®ller volume fraction are calculated using the Farber±Farris equations (Farber and Farris, 1987):
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where G is the shear modulus of propellant, n the Poisson's ratio of propellant, K the bulk modulus of
propellant, and Ki, Gi are the moduli of ®ller. The damage caused by dewetting can be evaluated by
following procedure. Firstl, the stress is calculated for given deformation history. Secondly, dewetting
occurrence is determined by Eq. (7) for current group of undewetted ®ller particles with largest radius.
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And then if dewetting occurs, the particles in the current group are removed to yield new ®ller volume
fraction. Then KD and GD are calculated using Eq. (8). Finally, damages due to dewetting are calculated
by Eqs. (5) and (6). Above procedure is repeated until no dewetting occurs.

The cyclic load e�ects are characterized as the rapid decrease in stress during unloading and large
amount of hysteresis in load±unload cycles. The cyclic load e�ects depend on current shear strain and
maximun shear strain during the loading history, which is known through experiment (Swanson and
Christensen, 1983). Thus, the nonlinearities during cyclic loading are accounted for by the following
function f which depends on the generalized octahedral shear strain measure (OÈ zuÈ pek and Becker, 1996).
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1 ÿ 6 �I2�1=2, �I1 and �I2 are the ®rst and second invariant of �C � J ÿ2=3C, fr=u � fr=fu, �Irel�
�Igÿ �Igmin

�Igmaxÿ �Igmin

, �Igmin
is the value at the end of unloading. fu and fr are obtained from the comparison between

calculated stresses without f and measured ones in unloading and reloading test. Thus, total volumetric
and deviatoric damages used in this model are de®ned as follows:

Dv � D̂vf

 
�Ig

�Igmax

!
�10�

Fig. 1. Unloading and reloading functions, fu, fr.
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Dd � D̂df
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2.2. Improved cyclic loading damage function

The unloading and reloading functions, fu and fr are shown in Fig. 1. These functions are obtained
from the uniaxial cyclic test with constant strain amplitude (0±20% strain) at 50%/min, 208C. This
process is well explained by Jung and Youn (1999). For the reloading after partial unloading condition
as in Fig. 2, the function f evaluated by Eq. (9) is shown as the triangular symbols in Fig. 3. In Fig. 3,
the values of f turn out to be impractically small or large when the load direction is reversed. This does

Fig. 2. Imposed strain history for partial unloading and reloading.

Fig. 3. Behavior of function f at reloading from unloading.
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not re¯ect the real behavior of propellant and make the convergence rate slow when used in the ®nite
element analysis. Therefore, the form of f in Eq. (9) is modi®ed for the reloading or unloading from
reloading conditions as follows:

f
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!
�
8<: fu at unloading from loadingÿ

1ÿ ~Irel

�
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In Eq. (12), the values of f are considered to vary linearly from fu to fr during �Igmin
< �Ig < �Igmin

�� �Igmax
ÿ

�Igmin
� �Igmin

�Igmax

: This results in smooth transition of f between fu and fr when the load direction is reversed.
This is shown as the circular legend in Fig. 3. When this improved form of f is applied for the uniaxial
complex multiple load test conducted by Jung and Youn (1999), the comparisons of the predicted and
observed stress±strain behaviors are shown in Fig. 4. The modi®ed form of f, Eq. (12), shows more
accurate stress predictions than the previous one, Eq. (9), at cyclic loading condition.

3. Implementation of constitutive equation

For the analysis of three-dimensional ®nite element analysis, the constitutive equation is implemented

Fig. 4. Uniaxial complex multiple load test at 208C.
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in the user subroutine UMAT of ABAQUS code. This can be done by updating the stresses at the end
of the increment and providing the tangent sti�ness using the presented constitutive model (ABAQUS
User's Manual, 1996).

3.1. Stress representation

For ®nite strain applications, the interface for subroutine UMAT requires Cauchy stress components
as stress measures. The second Piola±Kirchho� stress in the constitutive equation, Eq. (1), is converted
to Cauchy stress by the relation s � 1

JFSF
T: The constitutive equation in terms of Cauchy stress

becomes as follows:

s � DvPI�Dd
1

J
dev

�
�FH �F

T
�

�14�

where dev��� � � ÿ 1
3��:I �I and �F � J ÿ1=3F is volume preserving deformation gradient. The calculation

of the convolution integrals, H and P, is accomplished by using a numerical algorithm developed by
Taylor et al. (1970). By using the Prony series representations of the relaxation moduli and
approximating the integrals of each series terms, H and P are arranged in the following forms.
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DZ �Pn�1 ÿPn� and the right subscripts mean

time steps, that is, �Pn�1 means the value of �P at time tn�1:

3.2. Tangent sti�ness representation

In ABAQUS (ABAQUS Theory Manual, 1996), Kirchho� stress increment dtt is represented by spin
tensor W and tangent sti�ness LJ as

dtt � dWtt� ttdW T �LJde �17�
By letting @S=@E as L, using the relation between 2nd Piola±Kirchho� stress S and Cauchy stress s
and introducing time derivative of Kirchho� stress, t, LJ is represented by the following relation

LJ
ijkl � Cijkl � diksjl � sikdjl �18�

where

Cijkl � 1

J
FipFjqFkrFlsLpqrs �19�
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L is obtained by di�erentiating Eq. (1) by Green strain E as
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Therefore, substituting Eq. (20) for Eq. (19) and simplifying gives
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The unsymmetric feature of Cf in Eq. (27) produces the unsymmetric sti�ness matrix in the ®nite
element analysis. For the sake of computational e�ciency, symmetric approximation of Cf, �Cf �sym �
1
2 �Cf � CT

f �, is used. Substituting Eq. (26) for Eq. (18), the ®nal form of tangent sti�ness can be written
as follows:

LJ
ijkl � Dv
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@J 2
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�
dijdkl ÿ 2Pdikdjl

�
�Dd�Cdev�ijkl�

ÿ
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�
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�diksjl � sikdjl �29�

In this study, Mooney±Rivlin hyper elastic model is used for the deviatoric free energy function and
second degree polynomials of J for the volumetric free energy function.
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As stated above, the stress and tangent sti�ness components are calculated in UMAT from Eq. (14),
(29). The algorithm implemented in a computer code for the prediction of stress±strain behavior can be
summarized as follows:

Initial propellant properties and con®guration:
1. Specify mechanical properties of the solid propellant, matrix, ®ller, void and adhesion energy
2. Specify initial statistical distribution of ®ller particle size.
Deformation of solid propellant:
3. Calculate the cyclic loading damage function by Eq. (12)
4. Calculate the viscoelastic stress by Eq. (14)
5. Check, with Eq. (7), whether dewetting occurs at this stress for the largest particles
6. If dewetting do not occurs, calculate tangent modulus by Eq. (29) and go to ABAQUS main
routine.
7. If dewetting occurs, reduce the dewetted ®ller volume fraction and increase the void volume
fraction by the same amount.
8. Calculate the reduced relaxation modulus and damage functions by Eqs. (8), (6) and (9).
9. Reduce the current ®ller volume fraction by the dewetted ®ller amount.
10. Go to STEP 4 and calculate the reduced nonlinear viscoelastic stress by Eq. (14).

This process is summarized in the ¯ow chart shown in Fig. 5.

4. Experiment

The material used in this study is an HTPB solid propellant with 76% particle volume fraction of AP

G. Jung et al. / International Journal of Solids and Structures 37 (2000) 4715±4732 4723



(ammonium perchlorate) and Al (aluminum) powder. The initial propellant properties and con®guration

required in the simulation were measured (Jung and Youn, 1999). Moduli were obtained from uniaxial,

shear relaxation tests and Pockerchip constant rate tests at ÿ90 to 608C as shown in Fig. 6. Adhesion

energy between binder and AP was obtained from 1808 peel test. Moduli of the void were determined by

Fig. 5. Calculation algorithm for UMAT.

Fig. 6. Master relaxation modulus and shift factor.
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matching the uniaxial constant rate stress±strain curve at 208C, 50%/min. Statistical distribution of ®ller
particle size was measured by a Malvern Series Particle sizer and the result is shown in Fig. 7. The
methods to obtain these parameters and the results are explained in detail in the previous paper by the
same authors (Jung and Youn, 1999).

The biaxial strip tests are conducted to verify the validity of the three-dimensional constitutive model.
The strip biaxial specimen is rectangular in shape and bonded to wooden-tab as illustrated in Fig. 8
(Schapery et al., 1975). The specimen contains a circular hole to produce severe stress gradients. A large
block of the material is bonded to wooden-tab with the polyurethane adhesive and specimens are mill
machined out of the block. The specimens are stored in a desicator (RH< 10%) to minimize the e�ects
of humidity. Constant rate tests, complex load tests are conducted. Four specimens are tested at one test
condition and stress responses are averaged. All tests are performed in an Instron 1122 and gas
dilatometer in the humidity controlled room (RH < 30%). Prior to testing, the specimens are
conditioned at each test temperature for more than 1 h.

Fig. 7. Filler size distribution for the solid propellant used.

Fig. 8. Biaxial specimen geometries and dimensions.
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5. Finite element analysis

Finite element mesh model of the specimen is shown in Fig. 9. One-eighth specimen is modelled using
the symmetry conditions. Twenty noded, three-dimensional isoparametric elements are used to model
the specimens. Finite element analyses are conducted for the loading conditions tested. The initial time
increment equivalent to the 0.5% global strain is chosen for the analysis. Auto time increment and the
convergence criteria in ABAQUS are applied.

6. Results and discussion

6.1. The constant rate test

The biaxial specimen is loaded at constant strain rates, 66.7 and 0.67%/min and temperatures, 60, 20,
and ÿ408C. The comparisons between the predicted and measured responses are shown in Figs. 10±12.
Global stress and volume dilatation against global strain is plotted. Global strain means the
displacement divided by the specimen height and global stress the load divided by the minimum cross

Fig. 9. Finite element mesh models of biaxial specimen.

Fig. 10. Biaxial constant strain rate test at 608C.
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section area of the specimen. A specimen with a hole creates a strain concentration around the perimeter
of the hole, the crack initiate at either side of the hole at the global strain lower than the uniaxial test.
The maximum values of each measured strain represent the crack initiation points. The ®nite element
analysis is conducted to the global strain of 30%. For some loading conditions, the solutions do not
converge up to the 30% global strain. This nonconvergent point corresponds to the one that the
maximum stress in the specimen reaches the tensile strength of the propellant. In this case, the norm of
tangent sti�ness approaches zero and the material instability occurs. In reality, the crack initiates at this
nonconvergent stress value. In general, the predicted stress responses are in good agreement with the
measured ones for the various strain rates and temperatures. The current model is veri®ed for the

Fig. 11. Biaxial constant strain rate test at 208C.

Fig. 12. Biaxial constant strain rate test at ÿ408C.
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biaxial geometry in addition to the uniaxial one (Jung and Youn, 1999). This demonstrates the validity
of the model which treats the softening of the propellant by the modulus decrease due to viscoelastic
dewetting. The calculated dilatations are distributed somewhat lower than the measured values.
However their trends are shown to be consistent.

6.2. Constant cyclic test

Cyclic load is applied to the biaxial specimen at 208C. The test is done with ®ve cycles at global strain
levels of 0±17.6% and strain rate 66.7%/min. There is a good agreement between the predicted and
measured stress as shown in Fig. 13. Thus the unloading and reloading functions obtained from one
uniaxial cyclic test condition can be used for the biaxial case. The applicability of cyclic load damage
function is veri®ed.

6.3. Similitude test

The biaxial specimen is loaded at strain rate 1.67%/min to the global strain level 12.3% and then
allowed to relax for 3 h. The relaxation is repeated at the global strain of 3.3% for 2 h and then the
specimen is loaded to failure at 6.7%/min. While the relaxation response is somewhat over-predicted,
the loading portions are well predicted as shown in Fig. 14. The results show the applicability of the
model for the relaxation and loading conditions.

6.4. Straining and cooling test

The tests are intended to verify the model for the loads that the solid propellant grains usually
experience. The biaxial specimen is cyclic loaded with the temperature lowering at a constant rate. The
®rst test is done with the increasing strain amplitude 0±22.3% at 1.67%/min, while the temperature is
changed at ÿ18C/min from 388C as shown in Fig. 15. Another cyclic test with subsequent loading and
unloading at di�erent strain levels is also conducted with the same strain rate of 1.67%/min while the

Fig. 13. Biaxial cyclic test with constant strain amplitude at 208C.
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temperature is changed at ÿ18C/min from 278C as shown in Fig. 16. As shown in Figs. 15 and 16, the
model somewhat under-predicts the magnitude of the stress. The predicted stresses are close enough to
the measured ones. Also, as shown in Fig. 16, the stresses are accurately predicted for the reloading or
unloading from reloading conditions. The results clearly demonstrate that the model can be used to
predict the complex behavior of the propellant.

As mentioned above, the constitutive model predicts reasonably well the solid propellant behaviors
under multi-axial and complex loading conditions that consist of constant loading, cyclic loading,
relaxation and straining and cooling. The model uses the damage functions developed from a few
uniaxial tests (Jung and Youn, 1999). The accuracies of the biaxial stresses and dilatation are somewhat

Fig. 14. Biaxial similitude test at 208C.

Fig. 15. Biaxial cycling with increasing strain amplitude and cooling test.
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lower than the uniaxial cases (Jung and Youn, 1999). However, the predicted values are very close to
the measured ones.

6.5. Comparison with other models

The comparisons with other models are impossible because the ®ller particle distributions and
adhesion data needed in current model are not available in the references of other models. Also, the
implementations of other models require some large amount of experiments and programming to
characterize the damage functions. So, the comparisons are made for the results predicted by the
constitutive models used in ABAQUS, TEXPAC code (Becker and Miller, 1989) and current model. The

Fig. 17. Comparisons of Current model, TEXPAC model and ABAQUS model at constant strain rate test at 208C.

Fig. 16. Biaxial complex multiple load and cooling test.
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constitutive model in ABAQUS (®nite strain viscoelasticity model) suitably generalizes the linear
viscoelastic hereditary integral to ®nite strain formulation. The model in TEXPAC adopted the Simo's
viscoelastic constitutive model. These two models can be used for viscoelastic material, which is
homogeneous and capable of large deformation without damage. But it is inappropriate to apply these
models to composite viscoelastic materials like solid propellant where damages are unavoidable when in

Fig. 18. Comparisons of Current model, TEXPAC model and ABAQUS model at cyclic test at 208C.

Fig. 19. Comparison of the maximum principal stress distributions in the biaxial specimen between TEXPAC model and Current

model at global strain 15%.
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use. For the loading conditions of constant rate test and constant cyclic test (for the case of Figs. 11
and 13), the predicted and measured responses are shown in Figs. 17 and 18,. The predicted results by
ABAQUS and TEXPAC are almost the same. As the strain increases, the predicted stress response by
ABAQUS and TEXPAC over-estimates the measured values and the over-estimation become more
conspicuous for the cyclic loading. This is due to the fact that material nonlinearities are not considered
in the constitutive models used in ABAQUS and TEXPAC. The comparisons of the stress distributions
at global strain 15% are shown in Fig. 19. This distribution is from the biaxial constant strain rate test
at 208C, strain rate 66.7%/min as shown in Fig. 11. In Fig. 11, dilatation is about 1.2% and the
dilatation against strain slope is larger than the one at small strain range. This indicates that dewetting
is involved. This can also be predicted from the dewetting criterion. Of course, the dewetting occurs in
the high stress concentration area around the hole and the stress distribution is much di�erent at this
region. Therefore, the TEXPAC model produces higher stresses than current model. These results show
the importance of considering the material nonlinearities into the constitutive model.

7. Conclusions

A three-dimensional nonlinear viscoelastic constitutive model of composite solid propellant is
developed and tested for biaxial loading conditions. In the model, the cyclic loading damage function of
OÈ zuÈ pek and Becker that is based on the octahedral shear strain measure is modi®ed to improve the
stress prediction accuracy. The constitutive equation is implemented into a ®nite element analysis code
for the analysis of biaxial specimens. A commercial ®nite element package `ABAQUS' is adopted for
analysis and the developed constitutive equation is implemented through a user subroutine, UMAT. The
constitutive model has been tested for biaxial complex loading conditions and the predictions have been
compared with the experiments. The results show that the model predicts the broad range of the
propellant behaviors with reasonable accuracies. Also, the importance of the material nonlinearities is
demonstrated through the comparisons with the constitutive models in ABAQUS and TEXPAC for
certain loading conditions. Therefore, the developed constitutive model can be e�ectively used in the
three dimensional ®nite element analysis for solid propellant grains.
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